Какво е вариация?
Използваме дисперсията на данните, за да оценим диапазона от бъдеща стойност в серия. Дисперсията показва колко данни могат да се различават от означава от набора от данни. Дисперсията често се нарича стойност на грешка. Това не е най -доверената статистика и не я използваме сами, за да прогнозираме бъдещата стойност.
Ако се говори математически, вариацията е средна стойност на квадратна разлика в точките от данните от средната стойност на данните. Дисперсията е квадратната стойност на стандартното отклонение. По -долу са представени двете формули на вариация.
Няма да е необходимо да използваме тези формули за изчисляване на дисперсията в Excel. Excel има две формули VAR.P и VAR.S, за да направи това. Ако просто искате да знаете как да изчислите дисперсията в Excel, използвайте формулите, описани по -долу. Ако искате да знаете какво е вариация и кога да използвате коя формула за вариация, прочетете цялата статия.
Как да намерите вариация в Excel?
Нека вземем пример.
Стартирах уебсайта си през януари 2019 г. Тук имам данни за нови потребители, присъединени всеки месец на моя уебсайт. Искам да знам вариацията на тези данни.
Това са пълни данни. Когато улавяме пълни данни (цялото население), изчисляваме вариацията на населението (защо? Ще го обясня по -късно в статията). Функцията Excel за изчисляване на вариацията на населението е VAR.P. Синтаксисът на VAR.P е
= VAR.P (номер1, [номер2], …)
Номер 1, номер 2,… : това са числата, за които искате да изчислите дисперсията.
Първото число е задължително.
Нека използваме тази формула за изчисляване на дисперсията на нашите данни. Имаме данни в клетка C2: C15. Така формулата ще бъде:
= VAR.P (C2: C15) |
Това връща стойност 186.4285714, което е доста голямо отклонение предвид нашите данни.
Тъй като моят уебсайт беше пуснат от януари 2019 г., разполагам с всички данни. Ако приемем, че стартирах уебсайта си отдавна, но данните, които имам, са само от януари 2019 г. до февруари 2020 г. Нямам пълни данни. Тогава това са само примерни данни. В такъв случай няма да използвам VAR.P вместо това ще използвам функцията VAR.S за изчисляване на вариацията.
= VAR.S (C2: C15) |
Функцията VAR.S връща по -голяма дисперсия от VAR.P. Връща 200.7692308.
Как се изчислява дисперсията ръчно в Excel?
Така че да, така изчислявате вариацията в Excel. Но как тези вариационни функции изчисляват тези числа? Ако го знаете, можете да разберете повече тези числа и да го използвате разумно. В противен случай тези числа са просто случайни числа. За да го разберем, трябва да изчислим дисперсията ръчно.
Изчислете ръчно вариацията на населението в Excel
Ще използваме същите данни, които използвахме в горния пример. Математическата формула за вариация на населението е:
За да изчислим дисперсията, трябва да изчислим средната (СРЕДНА) стойност на данните, разликата на всяка стойност от средната, да ги сумираме и накрая да разделим тази сума с общия брой наблюдения.
Стъпка 1. Изчислете средната стойност на данните
За да изчислим средната стойност на данните в Excel, използваме функцията AVERAGE.
Използвайте тази формула в клетка C17 (или където искате).
= СРЕДНА (C2: C15) |
Това връща 233.0.
Стъпка 2: Намерете разликата на всяка точка от средната стойност
Сега отидете на клетка D2 и извадете средната стойност (C17) от C2 (x). Използвайте тази формула в D2 и я плъзнете надолу до D15.
= C2- $ C $ 17 |
Стъпка 3: Определете всяка разлика.
Сега трябва да изравним всяка разлика, която имаме тук. В клетка E2 напишете формулата по -долу и плъзнете надолу до E15:
= МОЩНОСТ (D2,2) |
Стъпка 4: Сумирайте квадратите
Сега трябва да обобщим тези квадратни разлики. Така че използвайте тази формула в клетка C18:
= SUM (E2: E13) |
Последна стъпка: Разделете сумата от квадрати с броя на наблюденията.
Имам 14 наблюдения. Можете да изчислите, като използвате функцията COUNT.
Използвайте тази формула в клетка C19, за да изчислите вариацията на популацията.
= C18/COUNT (C2: C15) |
Това връща стойността 186.429 … която е точно същата като дисперсията, върната от формулата за варианти на Excel VAR.P по -горе.
Сега, когато знаете как дисперсията на населението се изчислява ръчно в Excel, ще можете да знаете как да го използвате в действителния анализ.
Изчислете вариацията на пробата ръчно в Excel
В повечето случаи е невъзможно да се уловят всички данни за анализ. Обикновено избираме произволна извадка от данните и я анализираме, за да интерпретираме естеството на данните. В този случай ние, ако използваме дисперсията на населението, това може да бъде деструктивен анализ. За да сме в безопасност, използваме формулата за вариация на извадката. Формулата за вариация на пробата е:
Единствената разлика в вариацията на извадката и популацията е знаменателят. В примерната вариация изваждаме една от броя на наблюденията (n-1). Това се нарича безпристрастен анализ. Това гарантира, че данните не са подценявани и възможният диапазон на грешки е малко по -широк.
За да изчислим дисперсията на извадката ръчно в Excel, трябва да повторим стъпки от 1 до 4 на дисперсията на популацията. В последната стъпка използвайте следната формула:
= C18/(COUNT (C2: C15) -1) |
Това връща 200.769. Това е точно същото като дисперсията, върната от функцията VAR.S. Необходим е по -голям диапазон на грешки от VAR.P, за да се гарантира по -малък шанс за грешки при прогнозиране.
Разликата в данните не е толкова надеждна за прогнозиране. Ние изчисляваме стандартното отклонение, което е квадратен корен на дисперсията и много други статистически данни, за да сведем до минимум шансовете за грешка при прогнозирането.
Така че да, момчета, ето как можете да изчислите дисперсията в Excel. Надявам се да е било обяснително и полезно. Ако имате някакви съмнения относно тази вариация в excel или друга статистика, секцията за коментари е изцяло ваша.
Как да се изчисли стандартното отклонение в Excel : За изчисляване на стандартното отклонение имаме множество формули. Стандартното отклонение е просто квадратният корен на дисперсията. Той разказва повече за данните, отколкото за вариацията.
Как да използвате функцията VAR.P в Excel : Изчислете дисперсията за броя на данните за населението в Excel, използвайки функцията VAR.P
Как да използвате функцията STDEV.P в Excel : Изчислете стандартното отклонение за броя на данните за населението в Excel, използвайки функцията VAR.P
Как да използвате функцията DSTDEVP в Excel : Изчислете стандартното отклонение за числата на примерните данни, имащи множество критерии в excel, използвайки функцията DSTDEVP
Как да използвате функцията VAR в Excel : Изчислете дисперсията за примерните номера на данни в Excel, използвайки функцията VAR.
Анализ на регресии в Excel: Регресията е инструмент за анализ, който използваме за анализиране на големи количества данни и направяне на прогнози и прогнози в Microsoft Excel.
Как да създадете графика на стандартното отклонение : Стандартното отклонение показва колко данни са групирани около средната стойност на данните.
Популярни статии:
50 преки пътища в Excel за повишаване на вашата производителност | Бъдете по -бързи в задачата си. Тези 50 преки пътища ще ви накарат да работите още по -бързо в Excel.
Функцията VLOOKUP в Excel | Това е една от най -използваните и популярни функции на excel, която се използва за търсене на стойност от различни диапазони и листове.
COUNTIF в Excel 2016 | Пребройте стойностите с условия, използвайки тази невероятна функция. Не е необходимо да филтрирате данните си, за да броите конкретни стойности. Функцията Countif е от съществено значение за подготовката на вашето табло.
Как да използвате функцията SUMIF в Excel | Това е друга основна функция на таблото. Това ви помага да обобщите стойностите при конкретни условия.